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Nonlinear Schrödinger flow in a periodic potential
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We report a study of solutions of the defocusing nonlinear Schro¨dinger equation in a spatially periodic
potential. The ground-state solution and the steady flows of the system are studied analytically. Above a critical
current, a steady state no longer exists and time-dependent solutions are generated, which are numerically
simulated and described.
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I. INTRODUCTION

The nonlinear Schro¨dinger~NLS! equation that describes
among other physical systems, the dynamics of a wea
interacting Bose gas@1,2# has been successfully applied
the interpretation of the experimental observation of trap
condensates@3,4#. Sometime ago it has been proposed a
model of superfluidity due to the existence of a transit
from dissipationless flow~superflow! to a dissipative flow. In
this transition, energy is removed from the system by
emission from an obstacle, of sound and vortices in the t
dimensional case@5#, or of gray solitons in the one
dimensional case@6#.

In previous theoretical works@5,6#, the obstacles were
localized in space. Our aim is to study such a transition i
system with a spatially extended periodic array of obstac
In particular we consider the NLS flow in a lattice or pe
odic potential. Applications of this mathematical proble
could be found in various systems as we discuss next.

The fast developments in condensate atomic vapors
gest that such an external potential could be imposed b
laser@7#. Actually, it is possible to modify the geometry o
the trap to get an almost one-dimensional toroidal Bo
Einstein condensate. Then it is imaginable that several m
ing laser beams could deplete the condensate density per
cally along the condensate. The motion of the laser be
could thus simulate a motion between the periodic lattice
the condensate. This situation will be described by the N
equation with a periodic potential and the results of
present paper have importance to understand both the
tionary and nonstationary properties of the condensate
fact a similar but simpler experiment has been recently
nounced by Ketterle and collaborators@7#. They have re-
ported the experimental realization of a superflow pass
around one obstacle. As predicted in@5# dissipation appears
at a well-defined critical speed.

Applications can also be found in nonlinear optics. In th
context, various materials allow the propagation of lig
pulses without any dispersion because of the nonlinear
quency response of the material to an electromagnetic
@8#. It is reasonable to believe that it is possible to realiz
periodic perturbation in the linear refraction index to sim
late a periodic potential in the NLS equation.

Moreover, several theoretical works about nonlinear at
PRE 611063-651X/2000/61~5!/5852~12!/$15.00
ly

d
a

e
-

a
s.

g-
a

-
v-
di-
s
d
S
e
ta-
In
-

g

t
e-
ld
a
-

optics described in Refs.@9–11# have shown that a NLS type
of equation with a periodic potential appears in the desc
tion of ultracold atoms interacting with a single standin
wave laser mode or with a traveling laser wave, which mig
be a further application of our results.

Periodic potential also occurs in crystals. In the superc
ductivity theory of metals, because of the interaction with t
lattice, the electrons form bound pairs that obey Bose sta
tics. Strictly speaking, a Cooper pair cannot be considere
a bosonic particle because the distance between the two
trons that form the pair can be very big compared to
interatomic distances. Nevertheless for phenomena that
slowly on the scale of the dimension of the pair~or the co-
herence length because we are at zero temperature! we can
expect an adequate description in terms of a one-par
wave function describing the position of the center of ma
of the pair. This description can be used to study the sup
current when a different crystal of a bigger period is in co
tact with the superconductor~superlattices!. A similar situa-
tion arises in superfluid helium flowing in a periodic poro
medium.

In this paper we study this problem in a one-dimensio
case. The lattice is considered as an external periodic po
tial of spatial periodd8, much larger than the interatomi
distances. That is we are in the case where one has m
particles per cellnd83@1, n being the density of particles
We notice that it is not possible to justify such an approa
for the case of electric conduction where one hasnd83;1.
However, as we said, our study is applicable to supercond
tion in a superlattice.

The nonlinear Schro¨dinger ~NLS! equation in one spatia
dimension and in the presence of an external nonunifo
potentialU(x) reads, in a dimensionless form,1

1Here t,x,c,U are dimensionless. In the context of a Bos
Einstein condensate Eq.~1! is obtained from the Gross-Pitaevskˇ
equation by the transformationst→a21t, x→b21x, c→g21c and
for our particular choice ofU, g8→d21g8, with a5@\/2m
3(8pa)2#, b51/8pa,g5(8pa)3/2, andd5(2m/\2)(8pa). Here
2p\ is Planck’s constant,m the atomic mass, anda the scattering
length. Thus, in the followingt is expressed in units ofa21, x in
units of b21, etc., and this defines what we call NLS units.
5852 ©2000 The American Physical Society
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ic t~x,t !52cxx~x,t !1uc~x,t !u2c~x,t !1U~x!c~x,t !.
~1!

This is a partial differential equation for a complex wa
function c(x,t). This equation is conservative and Ham
tonian, that is one can writeic t(x,t)5dH/dc* with

H5E S ucxu21
ucu4

2
1U~x!ucu2Ddx. ~2!

The Hamiltonian dynamics of Eq.~1! preserves, as well a
the initial energy H, the initial number of particlesN
5* uc(x)u2 dx.

Writing c5r1/2eiu, we obtain two ‘‘real’’ hydrodynami-
cal fields, r and u, representing, respectively, the partic
fluid density and the velocity potential

] tr522]x~r]xu!, ~3!

] tu52~]xu!21
1

r1/2
¹2r1/22r2U~x!. ~4!

The first equation is the density-mass conservation eq
tion, identifying 2]xu as the local velocityv. In the second
equation, the term (1/r1/2)¹2r1/2, often called the quantum
pressure is negligible for large scale flows, that is for flo
with a space scale much larger than the intrinsic microsco
length j0 ~see later!. When this quantum pressure is n
glected, the equation foru is the equivalent of Bernoulli’s
equation for a compressible fluid, with a ballistic equation
state for the pressure (p): p5r2.

Actually, for U(x)[0 the ground state is a homogeneo
solution: c05Ar0e2 ir0t. On the other hand, long
wavelength and low amplitude perturbations propagate w
a sound speedcs5A2r0. j0;1/A2r051/cs is the only char-
acteristic microscopic length contained in this equation.

As we said, we shall consider, for simplicity, that th
interaction range of the potentialU(x) is small compared to
its period, so that one may expect to have a ‘‘superflo
inside each unit cell. The above considerations motivate
to study the NLS equation~1! with the Kronig-Penney po-
tential

U~x!5g8 (
l 52`

`

d~x2 ld8! ~5!

with positiveg8.
The paper is divided in the following way. First, in Sec.

we look for steady-state solutions. In Sec. II A we discu
the case of pure real wave functions, and in particular
ground state. It will be shown that it is possible to constr
an area-preserving nonlinear application of the kind o
Poincare´ map that applied to the value and derivative of t
wave function in one point of the unit cell gives the val
and derivative of the wave function at the correspond
point of the next cell. This map exhibits periodic, quasipe
odic, and chaotic orbits, corresponding to different kinds
spatially extended steady-states solutions.

A similar situation occurs with the discrete Frenke
Kontorova model where an external periodic potential p
vents integrability. In this case, Aubry and Le Daeron@12#
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have studied in detail the ground-state solutions of the mo
proving that the ground state can be either periodic or q
siperiodic but not chaotic. They also discuss some partic
solutions~discommensurations! which are extrema of the en
ergy but satisfy some particular boundary conditions that d
tinguish them topologically from the ground states. Here,
will briefly discuss some similar situations.

Then, in Sec. II B, we discuss steady flows, i.e., sim
stationary solutions that are not real. We refer to this sit
tion as a flow regime because of the hydrodynamic anal
between the phase of the complex wave function and
speed potential of the Euler equation.

In Sec. III A we present a long-wavelength approximati
to describe the sound propagation of the superfluid den
variations. A theory for the excitation spectrum in a period
potential was developed in Ref.@13#. These authors assume
potential with soft variations in order to use a Thomas-Fe
approximation. Here, we study the long-wavelength limit
the excitation spectra but in another limit case, namely, if
potential varies on a very small scale compared to the pe
of the potential or the interatomic separation. Then, in S
III B we show some numerical results to describe the dis
pearance of the stationary solutions, leading to a dynam
behavior with propagating solitary structures. Finally, in S
IV we end with some remarks and conclusions.

II. STATIONARY SOLUTIONS

The stationary solutions of Eq.~1! are the extrema ofH
with a fixed number of particles, that is, one needs to m
mizeH2mN, which gives the following stationary nonlinea
Schrödinger equation:

052cxx~x!2mc~x!1uc~x!u2c~x!1U~x!c~x!. ~6!

The chemical potentialm is determined by imposing a finite
mean density of particlesn

n5 lim
L→`

1

L E2L/2

1L/2

dxuc~x!u2.

When the obstacle is localized in a finite region of the spa
as in @5,6#, the asymptotic solution at infinity must be a h
mogeneous solution with a valueAm, which fixesm as the
asymptotic value of the density. For Eq.~6! this is clearly not
the case so that there will be a more complicated rela
betweenm and the number of particles.

We shall introduce the following dimensionless variable

y5Amx, f~y!5
c~x!

Am
. ~7!

In these new variables, Eq.~6! reads

052fyy~y!2f~y!1uf~y!u2f~y!1Ũ~y!f~y!, ~8!

where the external periodic potential is now

Ũ~y!5g (
l 52`

`

d~y2 ld !

with the new parametersd andg given by
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d5Amd8, g5
g8

Am
. ~9!

We look for a solution of Eq.~8! of the form f(y)
5R(y)expiu(y), putting this form into Eq.~8! one gets the
hydrodynamic version of NLS@herer(y)[R(y)2#

052Ryy2R1R31Ruy
21Ũ~y!R, ~10!

05]y~2R2uy!. ~11!

Equation~11! says that a steady current

J52R2uy ~12!

is constant through the system. Note, however, that this is
current in the dimensionless variables and is related to
physical current by

Jph5m3/2J ~13!

as can be seen from Eqs.~7! and ~12!. On the other hand
Eqs. ~10! and ~11! are exactly the equations of motion of
classical Newtonian particle in a central field. In this an
ogy, the coordinatey plays the role of time, while the con
stantJ is proportional to the angular momentum. Equati
~10! becomes

052Ryy2R1R31
J2

4R3
1Ũ~y!R, ~14!

which is the ordinary differential equation for the radial va
able R(y). The partŨ(y)R of the ‘‘force’’ depends on the
‘‘time’’ y and acts as periodic kicks on the fictitious partic

A. The ground state and real excitations

Because of the energy~2!, it is a general property that th
ground-state wave function is real up to a constant phase
us take thenuy5J50. Hence, the wave function satisfies

Ryy52R1R31g (
l 52`

`

d~y2 ld !R. ~15!

~In this section,R is a real wave function and can take po
tive and negative values.! This Hamiltonian evolution is in-
tegrable forg50 in which case

c5Ry
21V~R! ~16!

is a constant of motion and

V~R!5R22
R4

2
~17!

is the ‘‘mechanical’’ potential energy. The phase portrait
this integrable system is characterized by two fixed po
R561,Ry50 for c5 1

2 , unbounded trajectories forc. 1
2 ,

half-bounded trajectories forc, 1
2 , periodic motions for 0

,c, 1
2 , and two heteroclinic orbits forc5 1

2 that connect the
aforementioned unstable fixed points.
he
e

-

.

let

f
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When gÞ0 the system is perturbed by periodic kick
which break the integrability of the system. The value oc
defined in Eq.~16! changes at each kick but takes a const
valuecl over each intervalyP@ ld,(l 11)d# where the sys-
tem is integrable. Equation~15! can be solved in each o
these intervals; the solution is formally

y5E
R( ld)

R(y) du

Acl2V~u!
. ~18!

Note that this integral is defined only up to a maximum
R(y), that is whenever the square root in the denomina
vanishes. The full solutionR(y) in the interval is constructed
by reflection of the actual solution up to (l 11)d. The whole
solution for ally is obtained by imposing at eachy5 ld the
continuity of the wave function and a jump condition on t
derivative ofR which is obtained directly after an integratio
of Eq. ~15! in a small interval aroundy5 ld. This condition
reads

Ry~ ld1!2Ry~ ld2!5gR~ ld !. ~19!

Ry( ld
1) is the value of the derivative ofR just aftery5 ld

and Ry( ld
2) is the value of the derivative ofR just before

y5 ld. Using Eqs.~18! and ~19! we can construct a strobo
scopic or Poincare´ map

@R„~ l 11!d…,Ry„~ l 11!d1
…#5M@R~ ld !,Ry~ ld1!#.

~20!

This map has the symmetry (R,Ry)→(2R,2Ry). Owing to
the Hamiltonian nature of the evolution, this map has
symplectic property. Maps with this property have also be
studied in other situations where the space plays the rol
time @12#. The map obtained in Ref.@12# is the standard map
which has properties similar to those of the map~20!. How-
ever, this similarity is only for the bounded trajectorie
Moreover, in the standard map the variable is an angle
thus it must be considered as varying modp. In our case
since the potential decreases to minus infinity the unboun
trajectories diverge in a finite time.

As we know from the properties of the map~20!, the
typical solutions are eitherperiodic, quasiperiodic, or cha-
otic. For example, one can easily predict the existence
periodicsolutions according to the following reasoning. An
periodic solution of the integrable case (g50) which van-
ishes at each pointld will be the simplest periodic solution
of Eq. ~6! because, firstly the equation is automatically s
isfied and secondly, there is no jump in the derivativeRy
sinceR( ld)50. We notice that this means that such so
tions are independent ofg. The period could bel52d/ l
with l integer. Let us, moreover, note that there is a mi
mum period that equals 2p @2# determined by the interna
scale in the free NLS equation@i.e., U(x)50# known as the
healing length.

These periodic orbits appears as points in theRy axis of
the phase portrait. Of course the trivial solution (R50,Ry
50), is also aperiodicorbit. For some values of the param
eters, these periodic orbits are elliptic and we observequa-
siperiodicorbits around them. There are other periodic orb
which are hyperbolic. These orbits are connected
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PRE 61 5855NONLINEAR SCHRÖDINGER FLOW IN A PERIODIC . . .
FIG. 1. Nonlinear Poincare´ map ~20!. The
quantities are in NLS units~see text!. We have
taken g50.3 and we changed. ~a! Here d51
.dc'0.298. We see the elliptic point at the or
gin and some quasiperiodic orbits. The quasipe
odic orbits of the map become more and mo
distorted and collapse into two heteroclinic orbi
connecting two hyperbolic points which are n
explicitly plotted. ~b! Plot for d53.17.p. We
see that the origin is a hyperbolic point and w
can also see the homoclinic orbit.~c! Here d
53.5.p1dc ; the origin is now elliptic and we
observe a sea of chaotic trajectories. We a
clearly note two hyperbolic points analogous
the ones appearing in case~a! but here corre-
sponding to a periodic solution of periodl
52d. ~d! For d56.35.2p, the origin is again
hyperbolic and there is a pair of homoclinic o
bits.
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homoclinic orbits. Near them, due to the Birkhoff theore
@14#, there should existchaotic trajectories.

The pictures in Fig. 1 illustrate the behavior of the m
when we varyd in Eq. ~15!. We can describe the following
bifurcation scenario for a small fixed value ofg (50.3 in
Fig. 1!. For dP(0,dc) the only fixed point~periodic orbit! is
the trivial solution (R50,Ry50) which is hyperbolic. At
d5dc there is an inverse pitchfork bifurcation and two h
perbolic fixed points bifurcate from the origin while th
trivial solution (R50,Ry50) becomes elliptic@see Fig.
1~a!#. In Sec. II A 1 we shall computedc and we give a
physical interpretation of this bifurcation. There we al
show thatdc,p.

The next change occurs ford5p, where a new stable
periodic orbit bifurcates from the origin while the origin b
comes unstable, i.e., the origin undergoes a period-doub
bifurcation. The two points of the new periodic orbit a
located on theRy axis and represent the periodic solution
period l52d discussed before, i.e., it satisfiesR( ld)50.
There is a homoclinic orbit which starts~and arrives! at the
origin contouring the two points@see Fig. 1~b!#.

At d5dc1p, another bifurcation occurs. The origi
again becomes stable and a new hyperbolic periodic o
appears@see Fig. 1~c!#. This bifurcation is similar to the one
that happens atdc @see Fig. 1~a!#.

In fact, there is a succession of bifurcations of the orig
that occur atd5dc1 lp ~with l 50,1,2, . . . ), as weshow in
Sec. II A 1, which are all equivalent and alternate with bifu
cations of the origin atd5 lp ~with l 51,2, . . . ).Each one
of these latter bifurcations introduces a periodic solution
g

it

f

period l52d/ l @see Fig. 1~d! showing the bifurcation after
d52p#.

We shall see thatdc→0 when g→0. So for g50 the
origin is unstable only ford5 lp. This can also be obtaine
by linearizing Eq. ~15! around zero and computing th
monodromy matrixA which evolves the system over on
period. It is easy to see that TrA52 cosd. Since the stability
condition readsuTr Au,2 @15#, we see that instability occur
for d5 lp. The curvesd5 lp andd5dc(g)1 lp in the plane
d2g determine stability regions which are typical of par
metric instability.

1. The ground state

For g50 the ground state is@R(y),Ry(y)#5@61,0# and
is represented by two fixed points. Asg increases the ground
state is a perturbation of this uniform state. The fact that
external potential is repulsive suggests a solution of the fo
depicted in Fig. 2.

This periodic solution is exactly the one characterized
the unstable fixed point of the map~20! which appears for
d.dc and which is located outside the elliptic island of Fi
1~a!. Moreover, it is the only real solution without zeros
expected for the ground state of a convex energy functio
@see Sec. IV B for the convexity and properties of this fun
tional#,

E@R~• !,Ry~• !#5m3/2E S uRy~y!u21
uR~y!u4

2

1g(
l

d~y2 ld !uR~y!u2D dy. ~21!
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This energy gets its minimal value at the periodic solut
given by the fixed point. Therefore, the ground state satis

cl5c ; l , ~22!

which implies

R~ ld !5R0 ; l ~23!

together with

Ry~ ld1!52Ry~ ld2!5
g

2
R0 ; l . ~24!

The last equality~24! follows directly from Eq.~22! by using
Eq. ~23! and the condition~19!.

The ground state can thus be expressed as

y5E
R0

R(y) du

Ac2V~u!
. ~25!

FIG. 2. Numerical calculation of the ground state. The quanti
are in NLS units. Here we have usedg850.3, a system with 256
mesh points and periodic boundary conditions. The distance
tween the deltas isd564 mesh points. The mesh size beingdy
51. We use a relaxation method to find the local minima of
functional associated with Eq.~6! with a givenm and homogenous
initial condition.
s

R0 can be written as a function ofc using Eqs.~16!, ~17!, and
~24!

R05A11
g2

4
2AS 11

g2

4
D 2

22c. ~26!

In order to determine this solution we should fix the const
c. The symmetry of the solution implies that the function h
a maximum at the valuesy5 ld1d/2. We can solve the
equationRy(y)50 with the help of Eq.~16! and we get that
the maximum ofR takes the value

Rmax5A12A122c.

Imposing that this value should be reached aty5 ld1d/2 we
obtain from Eq.~25! the required equation forc

d

2
5E

R0(c)

Rmax(c) du

Ac2V~u!
5I ~c!. ~27!

The right-hand side of Eq.~27! is an increasing function
of c with its minimum atc50 and a divergence atc5 1

2 @see
Fig. 3~a!#. For values ofd smaller than a critical value given
by

tanS dc

2 D5
g

2
~28!

the periodic orbit does not exist. Above this value, this or
always exists. This is the first bifurcation which occurs
increasingd because we can see from Eq.~28! that it is
always smaller thanp.

For givend8 andg8 ~the physical parameters of the sy
tem! Eq ~27! gives the functionc5c(m) plotted in Fig. 3~b!.
Equation~28! defines in fact a critical value ofm

tanS d8Amc

2 D 5
g8

2Amc

. ~29!

We can see that the number of particlesN vanishes atm
5mc . Using Eq.~16! we can compute for the ground sta
the number of particles in each cell as

s

e-
FIG. 3. ~a! Plot of the functionI (c). ~b! m as a function ofc for g850.3 andd851.0. The quantities are in NLS units.
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N52AmE
R0

Rmax u2 du

Ac2V~u!
~30!

which can be evaluated in the limitm→mc giving

N5
d8mcc~m!

2 S 11
sind8Amc

d8Amc
D . ~31!

Herec(m) vanishes atmc . Thus this bifurcation simply tells
us that there is a finite number of particles that can go to
ground state ifm.mc .

2. Real excitations

In the preceding Sec. II A 1, we have identified t
ground state with the periodic solution~of periodd!, which
appears after a bifurcation atd5dc(g). Periodic orbits of
periodd appear at everyd5dc(g)12lp with l 51,2, . . . , as
we can see from Eq.~28!. These orbits have exactly 2l nodes
per unit cell and thus represent excited states.

We have seen that the origin also bifurcates at everd
5dc(g)1(2l 11)p with l 50,1, . . . .These orbits are peri
odic orbits of period 2d and they have exactly 2l 11 nodes
per unit cell. To show thatd5dc(g)1p is a critical value,
we do a calculation similar to the one done in Sec. II A
Here the periodic orbit has a node in the middle of the u
cell and is an odd function with respect to that point. T
shape of the orbit in the second cell is obtained by reflec
of the shape in the first cell. That is we have again t
condition~19! is given by Eq.~24! and thus the value of the
function at the pointsld is given by Eq.~26!. Since atd/2 the
function as a node we have from Eq.~18!,

d

2
5E

R0(c)

Rmax~c! du

Ac2V~u!
1 E

0

Rmax~c! du

Ac2V~u!
.

Taking the limitc→0 one getsg/25tan@(dc1p)/2#. From
this equation we see that a periodic orbit~of period 2d)
appears at everyd5dc(g)1(2l 11)p.

For a given set of the physical parameters,d8,g8,N, the
ground state is a periodic solution which has a value om
fixed by Eq.~30!. Now the excitations of this ground sta
have different values ofm and they appear in different plot
similar to the one in Fig. 1. Therefore, it is difficult to cha
acterize and compare the excitations of a particular sys
from the map. Nevertheless, from very general propertie
this map and because of the Birkhoff theorem@14#, we know
that each one of the aforementioned orbits represen
physical excitation of the system.

We can argue that these excitations are unstable. To
this we note that, in the absence of an external potential,
~1! is equivalent to the transport equations for the densitr
5ucu2 and the mass currentJ5 i (ccx* 2c* cx)

] tr1]xJ50.

The momentum conservation reads

] tJ1]xT50
e

.
it

n
t

m
of

a

ee
q.

where the flux of momentumT is T5ucu42(c* cxx

1ccxx* )12cxcx* . Therefore, the forceF acting on a point
y5 ld of the obstacles isF5T( ld1)2T( ld2). For the real
steady excitations we haveT5m2R422RRyy12Rx

2) and
Rxx52R1R3 so thatT52cm2. We see that each point o
our obstacle~i.e., on y5 ld), is submitted to a forceF
52(cl 112cl)m

2. This result is quite interesting because
says that the net force on a delta vanishes whenever one
a single integration constantc for all the cells as for the
ground state@see Eq.~22!#. We can expect that excitation
with differentcl decay because for any perturbation the s
tem will try to minimize this excess of energy and to rea
the lower energy state.

A very simple excited state~which is topologically stable
whenever we impose a pure real wave function! is the one
described by the heteroclinic trajectory joining the two po
sible fixed points~see Fig. 4!. This excited state may be see
as a kink connecting the two different fixed points~ground
states! in the map of Fig. 1~a!. For low values ofg, this wave
function has only one zero, so that it is just the lower exci
real steady state.

This lower excited steady state is characterized as
lows: let R(0)(y) be the ground-state solution in a cell d
fined by the same constantc at each interval. Let us try the
AnsatzR(y)5A(Y)R(0)(y)1b(y), whereA(Y) is a slowly
varying amplitude. The variableY denotes this scale of varia
tion Y@d, so that spatial derivatives must be understood
]y→]y1]Y . We use that the equation for the functionR(y)
is Eq.~15!. One has that the equation for the correctionb(y)
is

LAb~y!5]Y
2A~Y!R(0)~y!12]YA~Y!]yR

(0)~y!

1@A~Y!2A~Y!3#R(0)~y!3,

with

FIG. 4. Numerical simulation of the heteroclinic first excite
state. The quantities are in NLS units. Here we have usedg850.3,
a system with 1024 mesh points and periodic boundary conditio
The distance between the deltas isd564 mesh points. The mes
size isdy50.2. We have started with an initial condition such th
the real part of the wave function changes its sign in an arbitr
point. The imaginary part is zero. We use a relaxation method
find the local minima of the functional associated with Eq.~6! with
a given m. We have noticed that the zero of the wave functi
moves to the nearest delta external potential. This is natural bec
the energy contribution of the deltas isg8m( lR( ld)2; then this
energy is lowered as the wave function vanishes in one pointld.
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LA52]y
22113A~Y!2R(0)~y!2

being a self-adjoint operator with the usual scalar produc
the unit cell^ f (y)g(y)&5*0

df (y)g(y)dy.
Finally, the solvability condition forb(y) leads for the

mean field equation for the slowly varying amplitudeA(Y):

D~A!]Y
2A~Y!1@A~Y!2A~Y!3#50, ~32!

where D5^R(0)(y)xA(y)&/^@R(0)(y)#3xA(y)& and xA(y)
belongs to the kernel ofLA . The solution of Eq.~32! is a
solution going fromA511 to A521, slightly different
from the usual hyperbolic tangent becauseDA depends ex-
plicitly on A. The size of the core is related to the mention
DA .

B. Steady flows

Now we turn into the stability of the ground-state sol
tions when a constant current is imposed on the system.
starting point is Eq.~14! and we look for solutions of this
equation that converge to the ground state in the limiJ
→0. We proceed as before. In intervalsyP@ ld,(l 11)d#,
the quantity

c5Ry
21VJ~R! ~33!

takes a constant value, where

VJ~R!5R22
R4

2
1

J2

4R2
.

The solution can be obtained in the same way as before

y5E
R( ld)

R(y) du

Acl2VJ~u!
, ~34!

wherecl is the value of Eq.~33! in the intervalyP@ ld,(l
11)d#. R( ld) and cl are determined fromcl 21 and R„( l
21)d… by the relation

Ry~ ld1!5gR~ ld !1Ry~ ld2!, ~35!

by the continuity of the functionR, and by the solution~34!
in the previous interval.

As a particular case, this solution can be periodic imp
ing cl5c, ; l . At eachy5 ld, the amplitudeR takes the
same value, we call itR0. The absolute value of the deriva
tive from the right-hand side is equal to the absolute value
the derivative from the left-hand side, let us call itR08 . Then
the condition~35! readsR085(g/2)R0, and from Eq.~33! we
get

c~R0!5
g2

4
R0

21VJ~R0!. ~36!

The maximum ofR should again be reached at the valu
y5nd1d/2. The maximum valueRm satisfies

c5VJ~Rm! ~37!
n

d

he

-

f

s

so that the undetermined constantc is fixed by the condition

d

2
5E

R0

Rm du

Ac2VJ~u!
. ~38!

It is easy to see that, whenJ→0, this solution coincides with
the ground state. In terms of a mechanical problem, we h
a particle that moves under the effect of the potentialVJ ~see
Fig. 5!.

The periodic orbit exists ifVJ
min,c,VJ

max, whereVJ
min

and VJ
max are the minimum and maximum of the potentia

respectively. As the currentJ increases the differenceVJ
max

2VJ
min decreases and there is a valueJq beyond which no

periodic orbit exists. This critical value is determined by t
condition that the maximum and minimum of the potent
merge in the inflection point given by

d

dR
VJ~R!U

R*
50,

d2

dR2
VJ~R!U

R*

50. ~39!

These relations allow us to obtain

Jq5
4

3A3
~40!

andR* 5A2/3. Note thatJq /R* 2 is exactly the sound spee
for a densityR* 2. No periodic solution exists with current
larger thanJq .

Now we will show that for a fixed set of the paramete
g8,d8,N, a smaller critical value is found. We consider E
~38! with a fixed value ofJ,d,g. As we said,R0 is a function
of c given by Eq.~36!. In Fig. 5 we plotc(R0) andVJ(R0).
A periodic solution exists ifcmin

J ,c,VJ
max and for each

value ofc there are two periodic solutions that correspond
the two possible values ofR0. We shall callR0

1 the right
branch andR0

2 the left branch. This means that there are tw
possible values for the right-hand side of Eq.~38!,

d

2
5I 6

J ~c!, ~41!

FIG. 5. The effective potentialVJ(R0) and Eq.~36! for c(R0).
The quantities are in NLS units.
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PRE 61 5859NONLINEAR SCHRÖDINGER FLOW IN A PERIODIC . . .
FIG. 6. ~a! Schematic plot ofI 6
J (c) as a function ofc. ~b! Plot of m as a function ofc. The plot is obtained numerically from Eq.~42!

for J50.24 and 0.52. One sees from the figure that for a given number of particles, i.e., a givenm* , the stationary solution disappears if th
minimum mcrit(J) of the curve is greater than this givenm* . This happens whenJ increases because the minimummcrit(J) increases with
J ~see text!. The quantities are in NLS units.
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where I 6
J (c) is the integral in Eq.~38! starting atR0

6 , re-
spectively@16#. Let us considerI 1

J (c). This function is de-
fined for cmin

J ,c,VJ
max. Starting atc5cmin

J we see that
I 1

J (c) decreases whenc increases. In fact, sincec(R0) takes
a minimum value a small increaseDc gives a changeDR0

;1ADc and a changeDRm;Dc. That is, the integration
interval diminishes asADc. Since the integrand also chang
at the orderDc we see thatI 1

J (c1Dc) decreases by an
amount ofADc up to leading order. On the other hand, wh
c is near VJ

max the function I 1
J (c) increases. This can b

shown by a similar argument using the fact thatVJ(R) has a
maximum so that a variationDc on c changesRm by an
amountADc. ThereforeI 1

J (c) decreases until a minimum a

a valuec̃(J) and then increases up to infinity atc5VJ
max. On

the other hand, it is easy to see thatI 2
J (c) always increases

and diverges also atc5VJ
max.

In Fig. 6~a! we plot I 6
J (c). In terms of the mechanica

problem of a particle in the potentialVJ , I 6
J (c) represents

the time taken by the particle starting fromR0
6 to arrive at

Rm . We know that this time is infinite when the particle h
to arrive at a maximum of the potential with zero velocity

Let us return to our physical problem. In a similar way,
in the case of the ground state, Eq.~41! gives here a relation
betweenm andc, i.e.,m5m(c,J). This function has a mini-
mum which defines a critical valuemcrit(J) which is the
value of m at which our solution for the given value ofJ
disappears in a saddle-node bifurcation as we shall see.

First, to see that there is such a minimum form one has to
remember that the dependence onm comes throughd andg
@see Eq.~9!#. Equation~41! is

d8Am

2
5I 6

J ~c;m!, ~42!

where we have explicitly written the dependence onm of I
which comes only fromg. For small values ofm the mini-
mum value ofc(R0), cmin

J , is greater thanVJ
max so that no

solution exists. Increasingm, the curvec(R0) approaches
VJ(R0) but the integralI 6
J (c) has a large value because th

possible values ofc are large, i.e.,c'VJ
max. For this rela-

tively small value ofm, Eq. ~42! cannot be satisfied. Increas
ing m we shall arrive to a situation where there is a solutio
Increasing againm, the minimumcmin

J decreases and w
arrive to the region where the two solutions exist. For ve
large values ofm, the values ofc approachVmax

J . In fact the
plot m5m(c,J) looks very similar to the plotI 5I 6

J (c) @see
Fig. 6~b!#. Sincem is a parameter of the system we see th
for m.mcrit(J) there are two solutions~one stable and the
other unstable! which collide and disappear by a saddle-no
bifurcation atmcrit(J)5minc m(c).

We can computemcrit(J) numerically or, equivalently,
Jph,cr(m), which is depicted in Fig. 7. The stationary sol

FIG. 7. Plot of the critical current as a function ofm. The quan-
tities are in NLS units. Hereg850.3 andd851.0. The curve with
the dots represents the numerical results obtained by computin
minimum ofm(c) for differentJ. The upper~far! curve is the criti-
cal value for the current without the lattice@see Eq.~40!# while the
near curve uses the approximation~44! for small g.
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tion disappears by a saddle-node bifurcation whenm de-
creases down tomcrit(J) or J increase up toJph,cr(m).

For a small potential strengthg, we can explicitly com-
pute the first correction ing to the critical current~40!. In
fact in the limit g→0 the differenceRm2R0→0 and Eq.
~38! gives

d

2
5

Rm2R0

Ac2VJ~R0!
. ~43!

From Eq. ~36!, Ac2VJ(R0)5gR0/2. ConsideringRm2R0
small, we can expandVJ(Rm) aroundR0 up to first order in
the differenceRm2R0. From Eqs.~36! and ~37! we getRm

2R05g2R0
2/8@R02R0

32(J2/4R0
3)#. Setting this equation

into Eq. ~43! and taking the limitJ→Jq , which meansR0

→R* 5A2/3 @see after Eq.~40!# we finally obtain Jcr

5(4/3A3)@12(3g/4d)# or in terms of the physical variable

Jph,cr5
4

3A3
m3/2S 12

3g8

4d8m
D , ~44!

which should hold asymptotically whenm→`. On the other
hand, one may have an idea of the critical current in the li
caseg→`. From Eq.~36! one gets in this limit

R0
25

2c1A4c22J2g2

g2
.

One notes here that bothR0 and the currentJ scale as 1/g;
one expect then that asg→`,

Jcr;1/g. ~45!

These asymptotic behaviors are also observed for one
lated obstacle@6#.

III. NONSTATIONARY SOLUTIONS

A. Sound

In this section we shall derive the long wave dynamics
the excitations around the ground state. Sound waves ar
excitations with the lower energy. For the homogeneous
lution of the NLS equation the excitation spectrum was o
tained by Bogoliubov@1#. The excitation spectrum of a sys
tem under the action of an external periodic potential
been recently studied in Ref.@13#. In their treatment the po
tential is a very smooth function which allows them to co
sider the Thomas-Fermi approximation. In our case the
tential is of very short variation and one cannot apply
Thomas-Fermi approximation. For simplicity we analyze t
problem with Eqs.~3! and ~4! which are equivalent to Eq
~1!. We consider sound waves that propagate in the sys
as perturbations of the ground state, i.e.,

r5r0~x!1r1 ,
~46!

u52mt1u1 .
it

o-

r
the
o-
-

s

-
o-
e
s

m

The equations that govern the sound waves are obtained
ting Eq. ~46! into Eqs.~3! and ~4!. Using the fact that the
ground state satisfies Eq.~6!

m5r0~x!1U2
~Ar0!xx

Ar0

,

and keeping only the linear terms, these equations are

] tr1522]x~r0]xu1!,

2] tu15S 3

2
2

m2U

2r0
D r12

1

2Ar0

]xxS r1

Ar0
D . ~47!

From these equations it is possible to study the excita
spectrum in detail. Since the ground state is a periodic fu
tion, this spectrum should display the typical band structu
as follows from Bloch’s theorem. Here we shall only obta
the long-wavelength part of the spectrum, in particular
effective sound speed. This allows us to neglect the h
derivatives ofr1 because they contribute to the dispersio
After some simplifications the pair~47! leads to the equation

] ttr1512]x$r0]x@W~x!r1#% ~48!

with

W~x!522
m2U

r0
2F ~Ar0!x

r0
G2

. ~49!

Since we are interested in the long-wavelength regime,
assume that there are two different length scales in the p
lem: the acoustic propagation is the large scale~X! and the
lattice distance, i.e., the period of the ground state, is
small scale (x). Consequently, the functionr1 which appears
in Eq. ~48! hasa priori dependence onX andx. We define
the functions

ã~x!5r0~x!W8~x!5a01a~x!, ~50!

b̃~x!5r0~x!W~x!5b01b~x!, ~51!

wherea0 andb0 are the mean values ofã and b̃ anda(x)
and b(x) are the rapid variations of these functions~this
implies that the mean values ofa and b are zero!. These
functions do not depend on the large scale since the gro
state fluctuates only over the small scale. The periodicity
r0 implies the periodicity ofW(x) and, thus, both functions
can be considered in the intervalxP(0,d8). As we noticed,
the ground state is symmetric with respect tox5d8/2 so that
r0 is even with respect tox5d8/2 and therefore from Eq
~49! it follows that W(x) is also even with respect tox
5d8/2. As a consequence, we get from Eq.~50! thatã is odd
and thusa050 while b̃ is an even~always with respect to
x5d8/2).

To solve Eq.~48! we use a method introduced by Kapitz
to calculate effective forces acting on an oscillator in t
presence of a rapidly varying field@17#. We use a scaling
where the slow variableX is related to the fastx through a
big numberK which is proportional to the ratio between th
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sound wavelength and the period of the lattice, i.e.,K
5l/d8. The spatial derivative is changed according to

]x→K]x1]X

andr1 is replaced by

r1→u0~X!1
u~x,X!

K
.

After substitutions into Eq.~48!, we get at the orderO(K1)
the equation

a8u01b0uxx1b8u081b8ux1buxx50 ~52!

and at the orderO(K0)

2v2u052~a8u1aux12b0uxX1au081b0u09

1bu091b8uX12buxX!. ~53!

We have denoted the derivative of the function by a sym
8 where no confusion arises. Equation~52! is an equation for
the fast variations ofu. The last two terms of Eq.~52! are
products of two rapidly varying functions so that they vary
different scales and they are thus neglected@17#. Thereafter
Eq. ~52! can be integrated directly and we obtain

u~x,X!52
1

b0
S u0~X!E a~x!dx1u08~X!E b~x!dxD .

~54!

Replacing this result in Eq.~53! gives

2
v2

2
u052u08S a13

ab

b0
1

a8

b0
E b1

b8

b0
E a D

2u0S a8

b0
E a1

a2

b0
D

1u09S b02b2
2b2

b0
2

b8

b0
E b D .

Now we proceed to take the average of this equation. A
some algebra and remembering that the productab is odd
and of zero mean value we get that the first and second te
have zero average. Only the third term has a nonzero a
age. Supposingu0;exp (iqX) and denoting the average b
^•&, we get for the effective sound speedce f f

ce f f
2 52b0S 12

^b2&

b0
2 D .

As a particular case we see that without periodic poten
r05m and thusb05r0 and ^b2&50, i.e.,ce f f5A2r0 as it
should be.

We compute the effective sound speed in the limitg
→0. In this limit, at the lowest order we get

ce f f5A2m1O~g8!.
l

t

r

s
r-

l

On the other hand, one may computece f f nearmc using the
same approximation as the one used to compute Eq.~31!,
which is the low-density regime. After some algebra one g

ce f f
2 ;mc~m! ——→

m→mc

0.

Note that at very low density the sound speed vanish beca
c(mc)50.

B. Saddle-node transition

After the saddle-node transition, no superflow solution e
ists in the lattice. We numerically solve the NLS equation
order to explore the time-dependent solutions~see Fig. 8!. As
the current crosses the threshold, gray solitons are peri
cally emitted from the obstacle as was observed in@6#. They
travel at a given speed until they arrive to the next obsta
and are partially transmitted and reflected. At the same ti
sound waves propagate in the system creating interferen
In Fig. 8 we show consecutive snapshots of the tempo
evolution. In Fig. 8~a! the flow is already present in the sy
tem. The absolute value of the wave function at the delta
decreasing on time. Figures 8~b! and 8~c! show, respectively,
the amplitude just before and after the gray soliton is nuc
ated at the delta potentials. The soliton propagates do
stream at a constant velocity until it reaches the next d
potential. During this time other solitons could have be
nucleated. Figure 8~d! shows two solitons propagating insid
each unit cell. After the scattering of the first soliton with th
delta potentials a fraction is transmitted and other reflec
Since their amplitude is smaller they travel faster genera
a complex dynamics of interferences with other solitons a
sound waves. We have observed a very rich behavior bu
shall not enter into detail since this is a problem that will
addressed in a separate paper.

IV. GENERAL REMARKS AND CONCLUSIONS

A. Superfluid l transition in a lattice

Let us consider the Ginzburg-Landau free energy for
superfluidl transition@2# nearTl

F5E S \2

2m
ucxu22m~T!ucu21b~Tl!

ucu4

2
1U~x!ucu2Ddx.

~55!

Herec is the order parameter,m(T)5a(Tl2T) andb(Tl)
are constants depending only on the thermodynamic v
ables. Without an external field~the periodic lattice!, one has
a second-order phase transition as the temperature decr
below Tl . In the presence of a boundary condition, th
threshold changes~see Ginzburg and Pitaevskiıˇ @2#!. Our
study shows that this effect remains in the presence of
external periodic lattice. In fact, the computations are
same as in Sec. II A 1 where we have computed the grou
state solution~it is the periodic solution!. The existence of a
nonzero wave function is possible if the relation
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FIG. 8. Temporal evolution of gray soliton
emission:~a! t52.1, ~b! t59.2, ~c! t510.3, ~d!
t521.1. Hereg850.3 andd8564 mesh points,
the mesh sizedy being equal to 1. The flow
~from right to left! is imposed by a Galilean boos
to NLS by adding a 2iv]c to Eq.~1!. This boost
fixes an external currentJ. As the flow~that is the
current! increases one sees that the steady s
breaks down to a temporal one where gray so
tons @the big depletion near the left-hand side
each point 64, 128, and 192 in~c!# are emitted
taking some energy. See main text for detai
The quantities are in NLS units.
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tanSA2mm~T!d8

2\ D>
A2mg8

2Am~T!\
~56!

holds. This relation follows directly from Eq.~29! but with a
given value ofm in the present context. This gives a shift
the critical temperature in the superfluid transition becaus
the lattice. Two limits are easy to consider.

~i! For smallg8, one approximates the function tan(x) by
its linear part ('x); that is, d85g8/m(T)5g8/a(Tl2T),
which gives the critical temperature

Tc5Tl2
g8

ad8
.

In this limit the critical temperature decreases as the latt
superfluid interaction increases. It happens that it is poss
to prove that Eq.~56! is also valid forg,0. It is interesting
to note that an attractive interaction with the lattice increa
the critical temperature.

~ii ! As g8→`, one has that the argument of the tange
function reachesp/2, so thatp\5d8A2mm(T), which gives
the following shift for the critical temperature:

Tc5Tl2
\2p2

2mad82
.

Even if those relations are only valid for temperatur
near thel point they suggest that some crystal structures
of

-
le

s

t

s
r

superlattices could destroy the superfluidity and /or sup
conductivity because they would shift the transition tempe
ture down to 0 K.

B. Convexity of the energy and properties of degeneracy
and zeroes of the ground state

As we have said the ground-state solution has no z
Moreover, it is nondegenerate in the sense thatR0(y) and
2R0(y) represent the same state. Those properties fol
directly from a general property of the functionalE@R# for
the pure real fieldR(y) defined in Eq.~21!. This property is
the following: the functional energyE@R# is convex inR2.
That is, for any reall such that 0<l<1, then

E@R25lR1
21~12l!R2

2#<lE@R1
2#1~12l!E@R2

2#.

HereR1(y) andR2(y) are two real functions. The proof o
this property requires only that*dy Ry

2 is convex because
both *dy(R4/2) and *dy U(y)R2 are clearly convex. The
convexity of *dy Ry

2 follows after a proof by Benguria and
collaborators@18#. We sketch this proof in the following
lines.

Let R25lR1
21(12l)R2

2, then one has that~primes de-
note derivative respect toy)

RR85lR1R181~12l!R2R28 .

Now we use the Cauchy-Schwarz inequality: (a1b1

1a2b2)2<(a1
21a2

2)(b1
21b2

2) with a15AlR1, b15AlR18,
a25A(12l)R2, andb25A(12l)R28. Then one has
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R2R82<@lR1
21~12l!R2

2#@lR81
21~12l!R82

2#,

which proves the convexity of*dy Ry
2 in R2 wheneverR2

does not vanish.
One has the following property: IfE@R2# is convex then

the ground stateR0
2 which minimizesE@R2# is not degener-

ated and has no nodes.
The proof of this statement follows in two parts.
~i! We shall prove the reciprocate, that is, if the grou

stateR0
2 is degenerate thenE@R2# is not convex. IfR1

2 and
R2

2 are two different ground states then one has thatE@R1
2#

5E@R2
2# are two absolute minima, but this means thatE@R2#

could not be convex because convexity would imply the
istence of an ‘‘intermediate’’ solution@R25lR1

21(1
2l)R2

2# with a lower energy; therefore,R1
2 andR2

2 are not
the ground state, or, if they are, one has thatR1

25R2
2.

~ii ! Similarly, we show that if the ground stateR0
2 has a

node thenE@R2# is not convex. LetR0(y) be the ground
state with a node aty0 andE@R0

2# is the absolute minimum
of E@R2#. Near the nodeR0(y)2 behaves locally asR0

2

'a2(y2y0)2. Following an argument due to Feynman@19#
one may see that a functionRF(y), consisting of the same
R0(y) but with a local modification neary'y0 of the form
@RF(y)#2'D1a2(y2y0)2, possesses less total energy. T
is impossible in a convex energy and contradicts also the
that R0 is a minimum of the functional. Q.E.D.

C. Conclusion

We have studied the stationary solutions of the defocus
NLS equation in a periodic potential, namely the Kroni
Penney potential. We have characterized the ground s
the excited states, and the steady flows. These ‘‘real ex
an

n

.

,

-

ct

g

te,
a-

tions’’ can be characterized with the help of a Poincare´ map
and they turn out to be typically periodic, quasiperiodic,
chaotic in space. We have also studied some simple dyna
cal behaviors like sound propagation in a periodic grou
state.

Finally, we have shown that the steady-flow solution do
not exist for any value of the parameters. For fixed exter
parameters such as the lattice strength, the period of the
tential, and the total number of particles per cell (g8,d8,N),
the steady-flow solution disappears by a saddle-node b
cation as the current~J! increases. This transition is analo
gous with the one observed in infinite spatially extended s
tems governed by the NLS equation@5,6#. We have obtained
the approximate dependence of the critical current in
limit of small and large values ofg8 @see Eqs.~44! and~45!#.
These have the same behaviors as obtained in@6# for the case
of one delta potential and can be interpreted as the effec
the coherence on the wave function.
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