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Nonlinear Schrodinger flow in a periodic potential
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We report a study of solutions of the defocusing nonlinear Qthger equation in a spatially periodic
potential. The ground-state solution and the steady flows of the system are studied analytically. Above a critical
current, a steady state no longer exists and time-dependent solutions are generated, which are numerically
simulated and described.

PACS numbgs): 42.65.Sf, 05.45-a, 0.3.75.Fi, 67.46:w

[. INTRODUCTION optics described in Ref§9—11] have shown that a NLS type

of equation with a periodic potential appears in the descrip-

tion of ultracold atoms interacting with a single standing-
ave laser mode or with a traveling laser wave, which might

The nonlinear Schidinger(NLS) equation that describes,
among other physical systems, the dynamics of a weakl
mteractlng Bo_se gagl,2] has peen successfull_y applied to 5’6 a further application of our results.
the interpretation of the experimental observation of trappe o ; .

. : Periodic potential also occurs in crystals. In the supercon-
condensatef3,4]. Sometime ago it has been proposed as a, .. . : . :
- ) ...__ductivity theory of metals, because of the interaction with the
model of superfluidity due to the existence of a transition

T S lattice, the electrons form bound pairs that obey Bose statis-

from dissipationless flousuperflow to a dissipative flow. In . . : . )
. s . tics. Strictly speaking, a Cooper pair cannot be considered as
this transition, energy is removed from the system by the . : ;
o ; . a bosonic particle because the distance between the two elec-
emission from an obstacle, of sound and vortices in the two;

: . . . trons that form the pair can be very big compared to the
dimensional cas€g5], or of gray solitons in the one- . L

: : interatomic distances. Nevertheless for phenomena that vary
dimensional casgs].

In previous theoretical work$b,6], the obstacles were slowly on the scale of the dimension of the por the co
. . . .. . herence length because we are at zero tempejatugecan
localized in space. Our aim is to study such a transition in a L .
. . o expect an adequate description in terms of a one-particle

system with a spatially extended periodic array of obstacles;

. ; . . Wave function describing the position of the center of mass
In particular we consider the NLS flow in a lattice or peri- . . o
! : N : . of the pair. This description can be used to study the super-
odic potential. Applications of this mathematical problem . . AN
. : . current when a different crystal of a bigger period is in con-
could be found in various systems as we discuss next.

The fast developments in condensate atomic vapors su ?Ct W'.th thg superconductc@superlat't|ce)'s A 5|m|.Iar.S|tua-
gest that such an external potential could be imposed by on arises in superfluid helium flowing in a periodic porous

laser[7]. Actually, it is possible to modify the geometry of Medium. _ _ _ _

the trap to get an almost one-dimensional toroidal Bose- N thiS paper we study this problem in a one-dimensional
Einstein condensate. Then it is imaginable that several mowe@S€. The lattice is considered as an external periodic poten-
ing laser beams could deplete the condensate density periodi@l of spatial periodd’, much larger than the interatomic
cally along the condensate. The motion of the laser beandistances. That is we are in the case where one has many
could thus simulate a motion between the periodic lattice an@articles per celhd’3>1, n being the density of particles.
the condensate. This situation will be described by the NLSVe notice that it is not possible to justify such an approach
equation with a periodic potential and the results of thefor the case of electric conduction where one ha$®~1.
present paper have importance to understand both the stllowever, as we said, our study is applicable to superconduc-
tionary and nonstationary properties of the condensate. IHon in a superlattice.

fact a similar but simpler experiment has been recently an- The nonlinear Schutinger (NLS) equation in one spatial
nounced by Ketterle and collaboratdi®]. They have re- dimension and in the presence of an external nonuniform
ported the experimental realization of a superflow passingotentialU(x) reads, in a dimensionless form,

around one obstacle. As predicted[5] dissipation appears

at a well-defined critical speed.

Applications can also be found in nonlinear optics. In this 166 ¢ x U are dimensionless. In the context of a Bose-
context, various materials allow the propagation of lightginstein condensate Eql) is obtained from the Gross-Pitaevskil
pulses without any dispersion because of the nonlinear frésquation by the transformations> &~ 1t, x— 8~ x, ¥— v~ 1y and
quency response of the material to an electromagnetic fielghr our particular choice ofU, g’— & 1g’, with a=[#/2m
[8]. It is reasonable to believe that it is possible to realize ax (8a)?], g=1/8ra, y=(8a)?2 ands=(2m/#2)(87a). Here
periodic perturbation in the linear refraction index to simu-2+7 is Planck’s constantn the atomic mass, analthe scattering
late a periodic potential in the NLS equation. length. Thus, in the following is expressed in units ot~ *, x in

Moreover, several theoretical works about nonlinear atonunits of 871, etc., and this defines what we call NLS units.
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(X, 1) = = (X, 1)+ [ (X D [PP(X, 1) + U (X) (X, ). have studied in detail the ground-state solutions of the model
(1) proving that the ground state can be either periodic or qua-
siperiodic but not chaotic. They also discuss some particular

This is a partial differential equation for a complex wave solutions(discommensuratiopsvhich are extrema of the en-
function ¢(x,t). This equation is conservative and Hamil- ergy but satisfy some particular boundary conditions that dis-

tonian, that is one can writiefy(x,t) = 6H/5y* with tinguish them topologically from the ground states. Here, we
g will briefly discuss some similar situations.

H:f (|¢X|2+ U] ef? ) dx. ) T_hen, in Seq. I B, we discuss steady flows, ie., smple

2 stationary solutions that are not real. We refer to this situa-

o ) tion as a flow regime because of the hydrodynamic analogy
The Hamiltonian dynamics of Eq1) preserves, as well as petween the phase of the complex wave function and the
the initial energyH, the initial number of particlesN speed potential of the Euler equation.
=[]$(x)]? dx. ‘ In Sec. Il A we present a long-wavelength approximation
Writing 4= p*%e'?, we obtain two “real” hydrodynami- o describe the sound propagation of the superfluid density
cal fields, p and 6, representing, respectively, the particle yariations. A theory for the excitation spectrum in a periodic
fluid density and the velocity potential potential was developed in R¢.3]. These authors assume a
potential with soft variations in order to use a Thomas-Fermi

dp=—2dx(pdx0), 3 approximation. Here, we study the long-wavelength limit of

1 the excitation spectra but in another limit case, namely, if the
_ 2, T w2 12 potential varies on a very small scale compared to the period
6 (9x0) +p1/2V P p=UM). “@ of the potential or the interatomic separation. Then, in Sec.

Il B we show some numerical results to describe the disap-
The first equation is the density-mass conservation equgearance of the stationary solutions, leading to a dynamical
tion, identifying 27,6 as the local velocity. In the second behavior with propagating solitary structures. Finally, in Sec.
equation, the term (2 V?p2 often called the quantum 1V we end with some remarks and conclusions.
pressure is negligible for large scale flows, that is for flows
with a space scale much larger than the intrinsic microscopic [l. STATIONARY SOLUTIONS
length &, (see later. When this quantum pressure is ne- ) ,
glected, the equation fof is the equivalent of Bernoulli's ~_1he Stationary solutions of Eql) are the extrema off
equation for a compressible fluid, with a ballistic equation ofWith & fixed number of particles, that is, one needs to mini-
state for the pressure): p=p>. mlze"H.—,uN, wh|ch gives the following stationary nonlinear
Actually, for U(x)=0 the ground state is a homogeneous>Cchrainger equation:
solution: o= \/%e 1ot .On the oth_er hand, Iong-_ 0=— wxx(x) _M¢(X) + | (ﬂ(X)'Zlﬂ(X)‘F U(x) lﬂ(X) (6)
wavelength and low amplitude perturbations propagate with
a sound speeds=\2po. £~ 1/\2py=1/c is the only char-  The chemical potentigk is determined by imposing a finite
acteristic microscopic length contained in this equation.  mean density of particles
As we said, we shall consider, for simplicity, that the
interaction range of the potentibl(x) is small compared to
its period, so that one may expect to have a “superflow”
inside each unit cell. The above considerations motivate us
to study the NLS equatiofil) with the Kronig-Penney po- When the obstacle is localized in a finite region of the space,
tential as in[5,6], the asymptotic solution at infinity must be a ho-
mogeneous solution with a valugw, which fixesu as the
asymptotic value of the density. For E@) this is clearly not
the case so that there will be a more complicated relation
betweenu and the number of particles.
with positiveg’. We shall introduce the following dimensionless variables:
The paper is divided in the following way. First, in Sec. Il
we look for steady-state solutions. In Sec. Il A we discuss P(X)
the case of pure real wave functions, and in particular the y=\/ﬁx, dy)= T (7)
ground state. It will be shown that it is possible to construct K
an area-preserving nonlinear application of the kind of an these new variables, E¢) reads
Poincaremap that applied to the value and derivative of the
wave function in one point of the unit cell gives the value 0= —¢yy(Y)—¢(Y)+|¢(Y)|2¢(Y)+D(Y)¢(Y), (8)
and derivative of the wave function at the corresponding
point of the next cell. This map exhibits periodic, quasiperi-where the external periodic potential is now
odic, and chaotic orbits, corresponding to different kinds of .
spatially extended steady-states solutions. ~
A similar situation occurs with the discrete Frenkel— U(y)_g|:2x ay=ld)
Kontorova model where an external periodic potential pre-
vents integrability. In this case, Aubry and Le Daefd]  with the new parameteid andg given by

1 (+L/2
n=lim —f dx| ¢(x)|?.
L)-wre

L—o

U0=g" X alx=Id") (5)
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/ When g#0 the system is perturbed by periodic kicks
g= . (9)  which break the integrability of the system. The valuecof

\/; defined in Eq(16) changes at each kick but takes a constant
value ¢, over each intervay €[ld, (I +1)d] where the sys-
tem is integrable. Equatiofil5) can be solved in each of
these intervals; the solution is formally

We look for a solution of Eq.(8) of the form ¢(y)
=R(y)expif(y), putting this form into Eq(8) one gets the
hydrodynamic version of NL$herep(y)=R(y)?]

0=-R,,— R+R3*+R#2+U(y)R, 10 = fR(y)L.
vy yHU(y) (10) y 1) Vo=V () (18)
0=4y(2R%6,). 11 o . , .
Note that this integral is defined only up to a maximum of
Equation(11) says that a steady current R(y), that is whenever the square root in the denominator
vanishes. The full solutioR(y) in the interval is constructed
J=2R?¢, (12 by reflection of the actual solution up tb+ 1)d. The whole

solution for ally is obtained by imposing at eagh=I1d the

is constant through the system. Note, however, that this is thegntinuity of the wave function and a jump condition on the
current in the dimensionless variables and is related to thgerivative ofR which is obtained directly after an integration
physical current by of Eq. (15) in a small interval aroung=Id. This condition

Jph:/'La/zJ (13 reads

+ -\ —

as can be seen from Eq¥) and (12). On the other hand, Ry(ld™)=Ry(ld")=gR(ld). (19
Egs.(10) and (11) are exactly the equations of motion of a
classical Newtonian particle in a central field. In this anal-
ogy, the coordinatg plays the role of time, while the con-
stantJ is proportional to the angular momentum. Equation
(10) becomes

Ry(Id™) is the value of the derivative d® just aftery=Id
andR,(Id™) is the value of the derivative dR just before
y=Id. Using Eqgs.(18) and(19) we can construct a strobo-
scopic or Poincarenap

2 [R((I+1)d),R/((1+1)d")]=M[R(Id),Ry(Id")].
0=—-Ry,~R+R3+ E+U(y)R, (14 (20

This map has the symmetrR(R,) — (—R,—R,). Owing to
which is the ordinary differential equation for the radial vari- the Hamiltonian nature of the evolution, this map has the
able R(y). The partU(y)R of the “force” depends on the symplec.tic proper'ty. Maps with this property have also been
“time” y and acts as periodic kicks on the fictitious particle.St“d'Ed in other situations where the space plays the role of

time[12]. The map obtained in Ref12] is the standard map,
which has properties similar to those of the map). How-
ever, this similarity is only for the bounded trajectories.
Because of the enerd®), it is a general property that the Moreover, in the standard map the variable is an angle and
ground-state wave function is real up to a constant phase, Ighus it must be considered as varying modn our case
us take therd,=J=0. Hence, the wave function satisfies since the potential decreases to minus infinity the unbounded
trajectories diverge in a finite time.
As we know from the properties of the mdgo0), the
typical solutions are eithgperiodic, quasiperiodicor cha-
otic. For example, one can easily predict the existence of
(In this sectionR is a real wave function and can take posi- periodic solutions according to the following reasoning. Any
tive and negative valuesThis Hamiltonian evolution is in- periodic solution of the integrable casg=0) which van-

A. The ground state and real excitations

Ry,=—R+ R3+g|:2_m S(y—Id)R. (15)

tegrable forg=0 in which case ishes at each poirtd will be the simplest periodic solution
of Eq. (6) because, firstly the equation is automatically sat-
C=R§+V(R) (16 isfied and secondly, there is no jump in the derivatRg
since R(Id)=0. We notice that this means that such solu-
is a constant of motion and tions are independent aj. The period could bex=2d/I
. with | integer. Let us, moreover, note that there is a mini-
V(R)=R2— R_ 17) mum period that equals2 [2] determined by the internal
2 scale in the free NLS equatidne., U(x)=0] known as the

healing length.
is the “mechanical” potential energy. The phase portrait of ~These periodic orbits appears as points in fyeaxis of
this integrable system is characterized by two fixed pointshe phase portrait. Of course the trivial solutioR<0,R,
R=+*1,R,=0 for c= %, unbounded trajectories far>1, =0), is also gperiodic orbit. For some values of the param-
half-bounded trajectories far<3, periodic motions for 0 eters, these periodic orbits are elliptic and we obseyve-
<c<3, and two heteroclinic orbits far= 3 that connect the siperiodicorbits around them. There are other periodic orbits
aforementioned unstable fixed points. which are hyperbolic. These orbits are connected to
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FIG. 1. Nonlinear Poincarenap (20). The
quantities are in NLS unit¢see text We have
takeng=0.3 and we change. (a) Hered=1
>d.~0.298. We see the elliptic point at the ori-
gin and some quasiperiodic orbits. The quasiperi-
odic orbits of the map become more and more
distorted and collapse into two heteroclinic orbits
connecting two hyperbolic points which are not
explicitly plotted. (b) Plot for d=3.17> 7. We

see that the origin is a hyperbolic point and we
can also see the homoclinic orbitc) Here d
=3.5>x+d.; the origin is now elliptic and we
observe a sea of chaotic trajectories. We also
clearly note two hyperbolic points analogous to

i i the ones appearing in case) but here corre-
ok . . sponding to a periodic solution of perion

05 05

Ry =2d. (d) For d=6.35>27, the origin is again
hyperbolic and there is a pair of homoclinic or-

05+ B ’ bits.

homoclinic orbits. Near them, due to the Birkhoff theorem period A =2d/l [see Fig. 1d) showing the bifurcation after
[14], there should existhaotictrajectories. d=2mx].

The pictures in Fig. 1 illustrate the behavior of the map We shall see thatl.—0 wheng—0. So forg=0 the
when we varyd in Eqg. (15). We can describe the following origin is unstable only fod=1. This can also be obtained
bifurcation scenario for a small fixed value gf(=0.3 in by linearizing Eg. (15 around zero and computing the
Fig. 1). Forde (0,d.) the only fixed pointperiodic orbiyis ~ Monodromy matrixA which evolves the system over one
the trivial solution R=0,R,=0) which is hyperbolic. At perloq_. It is easy to see that A= 2 cosd. Smce th.e. stability
d=d, there is an inverse pitchfork bifurcation and two hy- condition read$Tr A| <2 [15], we see that mstgblllty occurs
perbolic fixed points bifurcate from the origin while the for d=Im. The curvesi=lz andd=d.(g)+! in the plane
trivial solution (R=0,R,=0) becomes elliptic[see Fig. d—g_ dgterml'nle stability regions which are typical of para-
1(@]. In Sec. A1 we shall computel, and we give a metric instability.
physical interpretation of this bifurcation. There we also
show thatd <.

The next change occurs far= 7, where a new stable
periodic orbit bifurcates from the origin while the origin be-
comes unstable, i.e., the origin undergoes a period-doublin
bifurcation. The two points of the new periodic orbit are
located on theR, axis and represent the periodic solution of
period A =2d discussed before, i.e., it satisfiegld)=0.

1. The ground state

For g=0 the ground state igR(y),R,(y)]=[*1,0] and
is represented by two fixed points. 4sncreases the ground
state is a perturbation of this uniform state. The fact that the
@xternal potential is repulsive suggests a solution of the form
depicted in Fig. 2.

This periodic solution is exactly the one characterized by
. 4 ) - ¢ the unstable fixed point of the mdg0) which appears for
There is a homoclinic orbit which startand arrivesat the 4~ d_ and which is located outside the elliptic island of Fig.
origin contouring the two pointgsee Fig. 1)]. 1(a). Moreover, it is the only real solution without zeros as

At d=d.+, another bifurcation occurs. The origin expected for the ground state of a convex energy functional
again becomes stable and a new hyperbolic periodic orbjisee Sec. IV B for the convexity and properties of this func-
appeargsee Fig. 1c)]. This bifurcation is similar to the one tionall,
that happens al. [see Fig. 19)].

In fact, there is a succession of bifurcations of the origin
that occur ad=d.+ 17 (with 1=0,1,2 . ..), as weshow in
Sec. Il A 1, which are all equivalent and alternate with bifur-
cations of the origin atl=1# (with |=1,2,...).Each one
of these latter bifurcations introduces a periodic solution of

R 4
eRO)R 1= (IRl B

+92| 6(y—ld)|R(y)|2)dy- (21)
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5 ' ' ' R, can be written as a function ofusing Eqs(16), (17), and
(24)
125 i
R—\/1+gz 1+ i 2c (26)
1 ~ 0— Z - Z - .
R
R(Y) orst - In order to determine this solution we should fix the constant
¢. The symmetry of the solution implies that the function has
05+ - a maximum at the valueg=Id+d/2. We can solve the
equationR,(y) =0 with the help of Eq(16) and we get that
025 b _ the maximum ofR takes the value
0 . . . Rmax= V1—+1-2c.
0 64 128 192 256
Y Imposing that this value should be reachegatid + d/2 we

FIG. 2. Numerical calculation of the ground state. The quantitiesOb'[aln from Eq.(25) the required equation far

are in NLS units. Here we have usgd=0.3, a system with 256
mesh points and periodic boundary conditions. The distance be- 9: fR"‘aX(C) du =1(c)
tween the deltas isl=64 mesh points. The mesh size beidy 2 Ro(c) \c—V(u) '
=1. We use a relaxation method to find the local minima of the

functional associated with E¢6) with a givenu and homogenous The right-hand side of Eq27) is an increasing function
initial condition. of ¢ with its minimum atc=0 and a divergence at=3 [see

) _ o o ~ Fig. 3@]. For values ofd smaller than a critical value given
This energy gets its minimal value at the periodic solution,

given by the fixed point. Therefore, the ground state satisfies

dc
c=c VI, (22 ta >

(27)

g
=5 (28

which implies - . . . . .
P the periodic orbit does not exist. Above this value, this orbit

R(d)=R, V I (23)  always exists. This is the first bifurcation which occurs by
increasingd because we can see from E@8) that it is
together with always smaller thanr.
For givend’ andg’ (the physical parameters of the sys-
.9 tem) Eq (27) gives the functiorc=c(u) plotted in Fig. 3b).
+\ — - =
Ry(ld™)==Ry(ld") 2 Ro VI (4) Equation(28) defines in fact a critical value qgf
The last equality24) follows directly from Eq.(22) by using d’ Ve g’
Eq. (23) and the conditior(19). tan ——|= N (29
The ground state can thus be expressed as 2V ke
Ry du We can see that the number of particsvanishes atu
- - =uc. Using Eq.(16) we can compute for the ground state
y : (25 > Ve
Ry VC—V(u) the number of particles in each cell as
16 T T T T T T T 10
8 8t
6 1 6
Kc) B
4 4+
2+ 2
00 Ojl sz 0f3 0:4 (Iti 0?6 0t7 0:3 0.9 00 0,L1 0?2 0?3 0?4 0t5 0f6 0?7 018 09
[ [
(a) (b)

FIG. 3. (a) Plot of the functionl(c). (b) u as a function ot for g’=0.3 andd’=1.0. The quantities are in NLS units.



PRE 61 NONLINEAR SCHRCDINGER FLOW IN A PERIODC . .. 5857

N=2 Rmax uzdu (30) ' I '
#lro Ve—viu ! 1

- 4
which can be evaluated in the limit— w. giving 05t , }
R(y)

d'pec(p) [ sind’ Ve ol / _
N= + . (31
2 d' Ve o) -
Herec(u) vanishes aj.. Thus this bifurcation simply tells "
us that there is a finite number of particles that can go to the -2, 200 200 500 200 7000
ground state ifu> .. y/0.2

FIG. 4. Numerical simulation of the heteroclinic first excited
) - state. The quantities are in NLS units. Here we have gsed0.3,

In the preceding Sec. IIA1, we have identified the g system with 1024 mesh points and periodic boundary conditions.
ground state with the periodic soluti¢of periodd), which  The distance between the deltasdis 64 mesh points. The mesh
appears after a bifurcation at=d.(g). Periodic orbits of size isdy=0.2. We have started with an initial condition such that

2. Real excitations

periodd appear at everg=d.(g) + 2l 7 with |=1,2,...,as the real part of the wave function changes its sign in an arbitrary
we can see from Eq28). These orbits have exactly 2odes point. The imaginary part is zero. We use a relaxation method to
per unit cell and thus represent excited states. find the local minima of the functional associated with E&).with

We have seen that the origin also bifurcates at ewkery a given u. We have noticed that the zero of the wave function
=d.(g)+(21+1)7 with |=0,1, ... .These orbits are peri- Mmoves to the nearest delta external potential. This is natural because

odic orbits of period & and they have exactlyl2 1 nodes the energy contribution of the deltas ¢ 1R(Id)? then this
per unit cell. To show thatl=d.(g) + = is a critical value, €Nergy is lowered as the wave function vanishes in one pdint
we do a calculation similar to the one done in Sec. Il A 1. i 4 .
Here the periodic orbit has a node in the middle of the unitVhere the flux of momentumT is T=[ 9" = (4 i
cell and is an odd function with respect to that point. Thet ¥¥x) + 29yl . Therefore, the forc& acting on a point
shape of the orbit in the second cell is obtained by reflectioy =!d of the obstacles i&=T(ld")—T(Id"). For the real
of the shape in the first cell. That is we have again thasteady excitations we have=u’R*~2RR,+2R?) and
condition(19) is given by Eq.(24) and thus the value of the Ru=—R+R® so thatT=2cu? We see that each point of
function at the pointéd is given by Eq(26). Since ad/2the ~ our obstacle(i.e., ony=Id), is submitted to a forcer

function as a node we have from Eds8), =2(c,+1—C¢) 2. This result is quite interesting because it
says that the net force on a delta vanishes whenever one has

a single integration constamt for all the cells as for the

d Rmax(C) du Rmax(©) du Ja
2 f . eyl ¢ —_— ground statdsee Eq.(22)]. We can expect that excitations
2 JRe@ Ne—V(u) Jo c—V(u) with differentc, decay because for any perturbation the sys-

tem will try to minimize this excess of energy and to reach
Taking the limitc—0 one getgy/2=tar{ (d.+ 7)/2]. From the lower energy state.
this equation we see that a periodic orkaf period ) A very simple excited statévhich is topologically stable
appears at evergi=d.(g)+ (2l + 1) . whenever we impose a pure real wave functignthe one
For a given set of the physical parametet5,g’,N, the  described by the heteroclinic trajectory joining the two pos-
ground state is a periodic solution which has a valugwof sible fixed pointdsee Fig. 4. This excited state may be seen
fixed by Eq.(30). Now the excitations of this ground state as a kink connecting the two different fixed poiritgound
have different values oft and they appear in different plots state$in the map of Fig. (a). For low values ofy, this wave
similar to the one in Fig. 1. Therefore, it is difficult to char- function has only one zero, so that it is just the lower excited
acterize and compare the excitations of a particular systemeal steady state.
from the map. Nevertheless, from very general properties of This lower excited steady state is characterized as fol-
this map and because of the Birkhoff theorgd], we know  lows: let R©(y) be the ground-state solution in a cell de-
that each one of the aforementioned orbits represents fined by the same constaatat each interval. Let us try the
physical excitation of the system. AnsatzR(y)=A(Y)RO(y)+b(y), whereA(Y) is a slowly
We can argue that these excitations are unstable. To se@arying amplitude. The variabMdenotes this scale of varia-
this we note that, in the absence of an external potential, Eqion Y>d, so that spatial derivatives must be understood as
(1) is equivalent to the transport equations for the dengity 4,— d,+dy. We use that the equation for the functiBy)
=|4|? and the mass curredt=i (¥4} — v* ) is Eq.(15). One has that the equation for the correctidgy)
is
AT 070 Lab(y)=35AY)RO(y) +2ayA(Y),ROy)

The momentum conservation reads +[AY)—A(Y)3RO(y)3,

0 J+a,T=0 with
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La=— 35— 1+3A(Y)?RO)(y)?

being a self-adjoint operator with the usual scalar product in C(Ro)
the unit cell(f(y)g(y))=/5f(y)g(y)dy.
Finally, the solvability condition fob(y) leads for the
mean field equation for the slowly varying amplitudéy): | 7 TN, I AN
C

D(A)IZA(Y)+[A(Y)—A(Y)%]=0, (32 grl = =
in ‘{(Ro)
where D=(RO(y) xa(y))/([RO(Y)1*xa(y)) and xa(y)
belongs to the kernel of,. The solution of Eq(32) is a
solution going fromA=+1 to A=—1, slightly different
from the usual hyperbolic tangent becad3g depends ex- R, RS, R,
plicitly on A. The size of the core is related to the mentioned
Dy . FIG. 5. The effective potentid¥;(Ry) and Eq.(36) for c(Ry).
The quantities are in NLS units.

R,

B. Steady flows

_ . so that the undetermined constaris fixed by the condition
Now we turn into the stability of the ground-state solu-

tions when a constant current is imposed on the system. The

starting point is Eq(14) and we look for solutions of this 9: Rm  du (39)
equation that converge to the ground state in the lignit 2 Jry Je—V,(u)’
—0. We proceed as before. In intervale[1d,(I+1)d],
the quantity It is easy to see that, wheh-0, this solution coincides with
2 the ground state. In terms of a mechanical problem, we have
C=Ry+Vi(R) (33 a particle that moves under the effect of the poteitia(see

takes a constant value, where Fig. 5. L o i
’ The periodic orbit exists iV/]'"<c<V]?*, whereVj""
4 5 and V'® are the minimum and maximum of the potential,
Vy(R)=R?>— —+ —. respectively. As the curreincreases the differencé]'®
2 4R —V]'" decreases and there is a valigbeyond which no

) ) ) periodic orbit exists. This critical value is determined by the
The solution can be obtained in the same way as before, qngition that the maximum and minimum of the potential

merge in the inflection point given by

J'R(y) du (34)
y: —1
R(Id)\/c; — V5(u) d d?

GRV(R)| =0 —ZVy(R)| =o0. (39)
wherec, is the value of Eq(33) in the intervaly e[Id, (I R* R*
+1)d]. R(Id) andc, are determined front,_; and R((l
—1)d) by the relation These relations allow us to obtain

Ry(ld")=gR(ld)+Ry(ld ™), (35 4
Joi=—= (40)

by the continuity of the functioiR, and by the solutiori34) 3\3

in the previous interval.

As a particular case, this solution can be periodic imposandR* =/2/3. Note thatl,/R*? is exactly the sound speed
ingc,=c, V |.Ateachy=Id, the amplitudeR takes the for a densityR* 2. No periodic solution exists with currents
same value, we call iRy. The absolute value of the deriva- larger than,.
tive from the right-hand side is equal to the absolute value of Now we will show that for a fixed set of the parameters
the derivative from the left-hand side, let us calRff. Then  g’.d",N, a smaller critical value is found. We consider Eq.
the condition(35) readsR,=(g/2)Ry, and from Eq(33) we (38) with a fixed value ofl,d,g. As we saidR; is a function

get of ¢ given by Eq.(36). In Fig. 5 we plotc(Ry) andV;(Ry).
A periodic solution exists ifc;,;,<c<V]®* and for each
g? 5 value ofc there are two periodic solutions that correspond to
¢(Ro)= 7 RotVi(Ro). (36)  the two possible values d®,. We shall callR] the right

branch andR; the left branch. This means that there are two

The maximum ofR should again be reached at the valuesPossible values for the right-hand side of £898),
y=nd+d/2. The maximum valu®,, satisfies

c=V,(R,) 37) 5=11(0), (42)
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20

0.6

FIG. 6. (a) Schematic plot of%.(c) as a function of. (b) Plot of « as a function ot. The plot is obtained numerically from E2)
for J=0.24 and 0.52. One sees from the figure that for a given number of particles, i.e., auJivére stationary solution disappears if the
minimum u.,i;(J) of the curve is greater than this givest . This happens whediincreases because the minimurg,;(J) increases with

J (see text The quantities are in NLS units.

wherel”.(c) is the integral in Eq(38) starting atR; , re-
spectively[16]. Let us considet? (c). This function is de-
fined for ¢, .<c<V}3. Starting atc=c},;, we see that
Ii(c) decreases whemincreases. In fact, sinagR,) takes
a minimum value a small increagec gives a chang&R,

~++Ac and a changdR,~Ac. That is, the integration

interval diminishes agAc. Since the integrand also changes large values ojt, the values ot approachv

at the orderAc we see thatl) (c+Ac) decreases by an

V,(R,) but the integral”. (c) has a large value because the
possible values of are large, i.e.c~V]?*. For this rela-
tively small value ofu, Eq. (42) cannot be satisfied. Increas-
ing u we shall arrive to a situation where there is a solution.
Increasing agairnu, the minimumc;,,, decreases and we
arrive to the region where the two solutions exist. For very
J . Infact the

max-*
plot w= w(c,J) looks very similar to the plot=17.(c) [see

amount of\Ac up to leading order. On the other hand, whenFig. 6(b)]. Sinceu is a parameter of the system we see that
c is nearV}® the functionl” (c) increases. This can be for u>u(J) there are two solutiongone stable and the

shown by a similar argument using the fact thig{R) has a
maximum so that a variatiodc on c changesR,, by an

amounty/Ac. Thereforel ] (c) decreases until a minimum at

a valuec(J) and then increases up to infinity@t V3%, On
the other hand, it is easy to see tha(c) always increases
and diverges also at= V%,

In Fig. 6 we plot 17 (c). In terms of the mechanical
problem of a particle in the potentidd;, Ii(c) represents

the time taken by the particle starting frolR@f to arrive at

R, - We know that this time is infinite when the particle has

to arrive at a maximum of the potential with zero velocity.

Let us return to our physical problem. In a similar way, as

in the case of the ground state, E41) gives here a relation
betweenu andc, i.e., u=u(c,J). This function has a mini-
mum which defines a critical valug,;;(J) which is the
value of u at which our solution for the given value Jf
disappears in a saddle-node bifurcation as we shall see.

First, to see that there is such a minimum foobne has to
remember that the dependence@rtomes throughl andg
[see Eq(9)]. Equation(4l) is

d'Vu

— =1, (42
where we have explicitly written the dependenceomf |
which comes only frong. For small values oju the mini-
mum value ofc(Ry), Cpin, is greater thar/]®* so that no

solution exists. Increasing, the curvec(R,) approaches

other unstablewhich collide and disappear by a saddle-node
bifurcation atui;(J)=min; w(c).

We can computeui;(J) numerically or, equivalently,
Joner(#), Which is depicted in Fig. 7. The stationary solu-

3 F

J L

ph,cr

05

FIG. 7. Plot of the critical current as a function of The quan-
tities are in NLS units. Herg’'=0.3 andd’=1.0. The curve with
the dots represents the numerical results obtained by computing the
minimum of u(c) for differentJ. The uppel(far) curve is the criti-
cal value for the current without the latti€see Eq(40)] while the
near curve uses the approximatigh) for small g.
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tion disappears by a saddle-node bifurcation wherde-  The equations that govern the sound waves are obtained set-
creases down t@ui;(J) or Jincrease up td,p, (). ting Eq. (46) into Egs.(3) and (4). Using the fact that the

For a small potential strengtlp we can explicity com- ground state satisfies E()
pute the first correction iy to the critical current40). In

fact in the limit g—0 the differenceR,,—R,—0 and Eq. (0+U (VPo)xx
. M= Po - '
(38) gives Jpo
d Rn—Ro “3 and keeping only the linear terms, these equations are
i 43
2 \e=Vy(Ry) dp1= —20x(podxb1),

From Eg. (36), yc—V;(Rgy)=gRy/2. ConsideringR,,—Rg 3 u-U 1 p1
small, we can expan¥;(R,,) aroundR, up to first order in —&t01=(§— 2—)p1_T‘9XX —]. (47)
the differenceR,,— R,. From Eqgs.(36) and (37) we getR,, Po 2\po Vo

_ — 2R2 _p3_/(12 3 . . .
Ro=9"Rg/8{Ro—Ry—(J7/4R,) |. - Setting this equation From these equations it is possible to study the excitation

into *EE‘ (43 and taking the limit)—Jq, _WhiCh megnsRo spectrum in detail. Since the ground state is a periodic func-
—R*=y2/3 [see after Eq.(40)] we finally obtain Jc  tion, this spectrum should display the typical band structures
= (4/3y3)[1—(3g/4d)] or in terms of the physical variables 45 follows from Bloch’s theorem. Here we shall only obtain

the long-wavelength part of the spectrum, in particular the

4 3¢9’ effective sound speed. This allows us to neglect the high
Jph,cr:ﬁﬂ' - ad'n) (44) derivatives ofp, because they contribute to the dispersion.
K After some simplifications the paf#7) leads to the equation
which should hold asymptotically whem— . On the other Op1=F 20,1 podl W(X)p11} (48
hand, one may have an idea of the critical current in the limit
caseg—o. From Eq.(36) one gets in this limit with
_ 2
5 2c+ 4C2_J292 W(X):Z— u_ (\/;0)X . (49)
Ro=—%5— Po Po

g
Since we are interested in the long-wavelength regime, we
One notes here that boRR, and the currend scale as 4; assume that there are two different length scales in the prob-

one expect then that as— o, lem: the acoustic propagation is the large s¢¥eand the
lattice distance, i.e., the period of the ground state, is the
Jo~1/g. (45  small scale X). Consequently, the functigm which appears

in Eq. (48) hasa priori dependence oX andx. We define

These asymptotic behaviors are also observed for one isg)he functions

lated obstaclg6]. a(X) = po(X)W' (X) = arg+ a(X), (50

IIl. NONSTATIONARY SOLUTIONS E(X):PO(X)W(X):BO"',B(X)y (51)

A. Sound

In this section we shall derive the long wave dynamics forWhere“0 and g, are the mean values af and 8 and (x)

the excitations around the ground state. Sound waves are tf d '8 (x) are the rapid variations of these functiothis
excitations with the lower energy. For the homogeneous so'—mpl'eS that the mean values of and g are z_er(). These
lution of the NLS equation the excitation spectrum was ob-Junctions do not depend on the large scale since the ground
tained by Bogoliubo\1]. The excitation spectrum of a sys- stafce flgctuates or)ly over the small scale. The per|od!C|ty of
tem under the action of an external periodic potential hag0 implies th_e per|o_d|C|ty QW(X) and, t,hus, both funptlons
been recently studied in RdfL3]. In their treatment the po- Ccan be considered in the intervak (0d"). As we noticed,
tential is a very smooth function which allows them to con-the ground state is symmetric with respeckted’/2 so that
sider the Thomas-Fermi approximation. In our case the pofo IS €ven with respect ta=d'/2 and therefore from Eq.
tential is of very short variation and one cannot apply the(49 it follows that W(x) is also even with respect te
Thomas-Fermi approximation. For simplicity we analyze this=d'/2. As a consequence, we get from Esp) thata is odd
problem with Egs.(3) and (4) which are equivalent to Eq. and thusa,=0 While,~8 is an even(always with respect to
(1). We consider sound waves that propagate in the system=d’/2).

as perturbations of the ground state, i.e., To solve Eq(48) we use a method introduced by Kapitza,
- to calculate effective forces acting on an oscillator in the
p=po(X)+p1, presence of a rapidly varying field7]. We use a scaling

(46)  where the slow variabl¥ is related to the fast through a
0=—put+0,. big numberK which is proportional to the ratio between the
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sound wavelength and the period of the lattice, il€.,
=\/d’. The spatial derivative is changed according to

(9X—> K(?X‘F (9)(

andp; is replaced by

u(x,X)

p1— Ug(X)+ K

After substitutions into Eq(48), we get at the orde®(K?)
the equation

a’Ug+ Bolxxt B'Ug+ B’ Uxt+ Buyy=0 (52
and at the orde®(K°)
— w2Up=2(a' U+ au+ 2 BoUyx+ aul+ Boup
+ Bug+ B ux+2Buyy). (53
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On the other hand, one may computg; nearu. using the
same approximation as the one used to compute(E&L,
which is the low-density regime. After some algebra one gets

2
Cerr~mC(pu) —— 0.
M e

Note that at very low density the sound speed vanish because
C(ue)=0.

B. Saddle-node transition

After the saddle-node transition, no superflow solution ex-
ists in the lattice. We numerically solve the NLS equation in
order to explore the time-dependent solutiésee Fig. 8 As
the current crosses the threshold, gray solitons are periodi-
cally emitted from the obstacle as was observebin They
travel at a given speed until they arrive to the next obstacle
and are partially transmitted and reflected. At the same time,

We have denoted the derivative of the function by a symbokound waves propagate in the system creating interferences.

" where no confusion arises. Equati(@®) is an equation for
the fast variations ofi. The last two terms of Eq52) are

In Fig. 8 we show consecutive snapshots of the temporal
evolution. In Fig. 8a) the flow is already present in the sys-

products of two rapidly varying functions so that they vary attem. The absolute value of the wave function at the deltas is

different scales and they are thus negledted. Thereafter
Eq. (52) can be integrated directly and we obtain

(59

1
u(x,X)=—B—O(uo(X)f a(x)dx+u(’)(X)f B(x)dx

Replacing this result in Eq53) gives

2

W' aB o B
~ g T “°(“+3BO+BJ At BOJ “)
a’ a?
_UO(EJ 5,

2 2 ’
]

decreasing on time. Figure$l8 and &c) show, respectively,
the amplitude just before and after the gray soliton is nucle-
ated at the delta potentials. The soliton propagates down-
stream at a constant velocity until it reaches the next delta
potential. During this time other solitons could have been
nucleated. Figure(8) shows two solitons propagating inside
each unit cell. After the scattering of the first soliton with the
delta potentials a fraction is transmitted and other reflected.
Since their amplitude is smaller they travel faster generating
a complex dynamics of interferences with other solitons and
sound waves. We have observed a very rich behavior but we
shall not enter into detail since this is a problem that will be
addressed in a separate paper.

IV. GENERAL REMARKS AND CONCLUSIONS
A. Superfluid N transition in a lattice

Let us consider the Ginzburg-Landau free energy for the

Now we proceed to take the average of this equation. Aftesuperfluid\ transition[2] nearT,

some algebra and remembering that the prodygtis odd

2 4
and of zero mean value we get that the first and second terms. _ J’ h_ 2 2, |
have zero average. Only the third term has a nonzero aver]—% (2m|¢X| wDIYE+ AT
age. Supposingliy~exp (gX) and denoting the average by

(-}, we get for the effective sound speegt;

(B%)
Cai= 230( 1- ,3_3) .

+U(x)| ]2 | dx.
(55)

2

Here ¢ is the order parametet,(T)=a(T,—T) and B(T,)

are constants depending only on the thermodynamic vari-
ables. Without an external fielthe periodic latticg one has

a second-order phase transition as the temperature decreases

As a particular case we see that without periodic potentiabelow T, . In the presence of a boundary condition, this

po=p and thusBy=py and(B?)=0, i.e.,Cess=\2p, as it
should be.

We compute the effective sound speed in the ligit
—0. In this limit, at the lowest order we get

Cerr=2u+0(g").

threshold change$see Ginzburg and PitaevsKi2]). Our
study shows that this effect remains in the presence of an
external periodic lattice. In fact, the computations are the
same as in Sec. Il A 1 where we have computed the ground-
state solutior{it is the periodic solution The existence of a
nonzero wave function is possible if the relation
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FIG. 8. Temporal evolution of gray soliton
o i emission:(a) t=2.1, (b) t=9.2, (c) t=10.3, (d)
. ) . ) ) t=21.1. Hereg’'=0.3 andd’ =64 mesh points,
¢ '“ o8 i 26 0 i i 3 the mesh sizedy being equal to 1. The flow

125

!

R(y) 015
05

025

0

(from right to leff) is imposed by a Galilean boost
(b) to NLS by adding a & 9y to Eq.(1). This boost
fixes an external curredt As the flow(that is the

125

I

ROY) 015
05

025

currenj increases one sees that the steady state
breaks down to a temporal one where gray soli-
tons[the big depletion near the left-hand side of
each point 64, 128, and 192 iig)] are emitted
taking some energy. See main text for details.
The quantities are in NLS units.

(4

tr<\/2m,u(T)d’)> J2mg'
a 2% " 2wk

holds. This relation follows directly from Eq29) but with a
given value ofu in the present context. This gives a shift in
the critical temperature in the superfluid transition because of

the lattice. Two limits are easy to consider.

(i) For smallg’, one approximates the function taf(by
its linear part &x); that is,d’'=g'/u(T)=9"/a(T,—T),
which gives the critical temperature

!

g

n8 192 256

superlattices could destroy the superfluidity and /or super-
(56) conductivity because they would shift the transition tempera-
ture down to 0 K.

B. Convexity of the energy and properties of degeneracy
and zeroes of the ground state

As we have said the ground-state solution has no zero.
Moreover, it is nondegenerate in the sense fRgty) and
—Ry(y) represent the same state. Those properties follow
directly from a general property of the functiorg] R] for

the pure real fieldR(y) defined in Eq(21). This property is

the following: the functional energg[R] is convex inR?.
That is, for any reak such that Bs\<1, then

T=Th— —.
© N ad 2 2 2 2 2
E[R2=\R2+(1—\)RZ]<\E[RZ]+(1—\)E[RZ].

In this limit the critical temperature decreases as the Iattice|-_|ereR (y) andRy(y) are two real functions. The proof of
superfluid interaction increases. It happens that it is possiblﬁ]is préperty reqlzJires only thatdy F% is cor;vex because
to prove that Eq(56) is also valid forg<<0. It is interesting oth [dy(R%/2) and [dy U(y)R? are clearly convex. The
to note that an attractive interaction with the lattice increaseg 'y y Ly y N
convexity of fdy I% follows after a proof by Benguria and

the critical temperature. . . .
(i) As g’—c¢, one has that the argument of the tangentlc.ollaborators[ls]. We sketch this proof in the following
nes.

function reachesr/2, so thatmi=d’ 2mu(T), which gives P 2 .
the following shift for the critical temperature: Let R__)‘_R1+(1_)‘)R , then one has thaprimes de-
note derivative respect tp)

2_2
hom RR =AR;R|+(1—\)R,R}.

Te=Th— ———.
Y omad’?

Now we use the Cauchy-Schwarz inequalitya;lf,
Even if those relations are only valid for temperatures+a;b,)?<(af+a3)(b{+b3) with a;=\AR;, b;=\R{,

near the\ point they suggest that some crystal structures oe,=+/(1—\)R,, andb,=+/(1—\)R5. Then one has
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R?R2<[ARZ+(1—N)R3J[AR'2+(1—\)R'3],

which proves the convexity ofdy Rf in R? wheneverR?
does not vanish.

One has the following property: E[R?] is convex then
the ground statéi% which minimizesE[ R?] is not degener-
ated and has no nodes.

The proof of this statement follows in two parts.
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tions” can be characterized with the help of a Poinaauag
and they turn out to be typically periodic, quasiperiodic, or
chaotic in space. We have also studied some simple dynami-
cal behaviors like sound propagation in a periodic ground
state.

Finally, we have shown that the steady-flow solution does
not exist for any value of the parameters. For fixed external
parameters such as the lattice strength, the period of the po-

(i) We shall prove the reciprocate, that is, if the groundtential, and the total number of particles per cejl,d’,N),

stateR? is degenerate theB[ R?] is not convex. IfR? and
R are two different ground states then one has Ea®3]
= E[R%] are two absolute minima, but this means tBpR?]

the steady-flow solution disappears by a saddle-node bifur-
cation as the current)) increases. This transition is analo-
gous with the one observed in infinite spatially extended sys-

could not be convex because convexity would imply the extems governed by the NLS equatif6]. We have obtained

istence of an “intermediate” sqution[R2=AR§+(1
—\)R3] with a lower energy; thereford?? and R3 are not
the ground state, or, if they are, one has Rat R3.

(i) Similarly, we show that if the ground stai¢ has a
node thenE[R?] is not convex. LetRy(y) be the ground
state with a node at, and E[Rﬁ] is the absolute minimum
of E[R?]. Near the nodeRy(y)? behaves locally afj
~a?(y—Yo)?. Following an argument due to Feynmgi®]

one may see that a functidR:(y), consisting of the same

Ro(y) but with a local modification neay~y, of the form

[Re(y)12=A+ a?(y—yo)?, possesses less total energy. This
is impossible in a convex energy and contradicts also the fa

that Ry is @ minimum of the functional. Q.E.D.

C. Conclusion

the approximate dependence of the critical current in the
limit of small and large values @’ [see Eqs(44) and(45)].
These have the same behaviors as obtaingélifor the case

of one delta potential and can be interpreted as the effect of
the coherence on the wave function.
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